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Carbonylation reactions play a crucial role in organic and industrial chemistry, enabling the introduction of carbonyl groups into organic

substrates using carbon monoxide (CO). While CO is a cost-effective and atom-efficient reagent, its toxicity and low solubility present

significant challenges in traditional batch processes. In recent years, flow chemistry has revolutionized these transformations, offering

enhanced efficiency, safety, and precise control of reaction parameters.
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SCREENING IN BATCH MODE

CARBONYLATION REACTIONS AND FLOW CHEMISTRY
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BACKGROUND RESEARCH [4]

CO-DRIVEN SULFOXIMINOCARBONYLATION 

OF ARYL HALIDES IN CONTINUOUS FLOW

Sulfoximines are valuable scaffold in pharmaceutical, agricultural, and organic chemistry as chiral auxiliars and intermediates. Despite their synthetic potential, previous

approaches often rely on toxic reagents, excessive oxidants, and tedious purification steps, leading to low conversions and undesirable by-products.

Here, we report a continuous flow protocol for the N-aroylation of different functionalized aryl halides with sulfoximines under CO pressure using a palladium-based catalyst, a base, and
a ligand. Comprehensive screening of organic bases in batch mode allowed to identify optimal conditions, which were then translated into a flow system operating at 80 °C and 6 bar

for 40 minutes. This innovative strategy provides rapid reactions, high selectivity, and excellent yields (from 79 to > 99%) across a small library, demonstrating the advantages of

continuous flow technology in carbonylation chemistry.
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Pyr or Et3N, CH2Cl2

Entry Catalyst Ligand Base Conversion (%) a

1 [6] Pd/C - K2CO3 70

2 Pd(OAc)2 - K2CO3 91

3 Pd(OAc) 2 N-xantphos K2CO3 >99

4 Pd(OAc)2 N-xantphos DIPEA >99

5 Pd(OAc)2 N-xantphos pyridine 46

6 Pd(OAc)2 N-xantphos DBU >99

7 Pd(OAc)2 N-xantphos Et3N >99

8 Pd(OAc)2 N-xantphos TBAF >99

9 Pd(OAc)2 N-xantphos pyrrolidine >99

10 Pd(OAc)2 N-xantphos DMAP >99

11 Pd(OAc)2 N-xantphos morpholine >99

12 Pd(OAc)2 N-xantphos piperidine 78

13 Pd(OAc)2 N-xantphos DABCO >99

All reactions were performed with 0.5 mmol iodotoluene in 1 mL of DMF for 12 hours at 80 °C. a Determined by 1H-NMR of
the crude reaction mixture by comparing the methyl of tolyl group (3H, s) of the reaction product (2.40 ppm) with the
methyl group of iodotoluene (2.29 ppm) of the reaction mixture or aromatic protons in α-positions of tolyl groups (2H, m)
(7.23-7.18 reaction product and 6.94-6.90 ppm iodotoluene).
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Entry Base Conversion (%) a

1 DMAP 87

2 morpholine 91

3 DABCO >99

All reactions were performed with 0.5 mmol iodotoluene in 1 mL of DMF. The reaction mixture was pumped at 100 μL min-1, mixed
with a stream of CO at 1.00 mL min-1 and reacted inside a 10 mL coil-reactor for 40 minutes at 80 °C and 6 bar (BPR). a Determined
by 1H-NMR of the crude reaction mixture by comparing the methyl of tolyl group (3H, s) of the reaction product (2.40 ppm) with the
methyl group of iodotoluene (2.29 ppm) of the reaction mixture or aromatic protons in α-positions of tolyl groups (2H, m) (7.23-7.18
reaction product and 6.94-6.90 ppm iodotoluene).

SUBSTRATE SCOPE

OPTIMIZATION OF FLOW PARAMETERS
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Vapourtec ® E-Series
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• 8 Compounds
• Short reaction 

times (= 40 min)
• Excellent yields 

(from 79 to >99%)

= H, Me, OMe, Cl

= Me, Et

= H, Me, OMe, Cl

ARYL HALIDES
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RESULTS AND DISCUSSION

DATB, MS4A, toluene

Pump 1

Carbonylation reactions involve the incorporation of CO into organic molecules. Initially feared

for its toxicity, CO is now essential in various applications, with carbonylation chemistry achieving

major advancements in both industry and academic research. [1]

Flow technology is ideal for gas-liquid 

transformations, especially 

those involving toxic 

gases (i.e., CO). 

It ensures precise 

dosing, high 

Cruikshank

T and P 

conditions, and 

safe handling 

of hazardous 

reagents. [2, 3] 
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