CO-DRIVEN SULFOXIMINOCARBONYLATION OF ARYL HALIDES IN CONTINUOUS FLOW

AS Schröder Lab NSTITUTE OF APPPLIED SYNTHETIC WIEN **CHEMISTR**

BACKGROUND RESEARCH [4]

Pyr or Et₃N, CH₂Cl₂

Giada Moroni, Katharina Bica-Schröder

Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria

Sustainable Organic Synthesis & Catalysis

MnO₂/TBHP

ABSTRACT

Carbonylation reactions play a crucial role in organic and industrial chemistry, enabling the introduction of carbonyl groups into organic substrates using carbon monoxide (CO). While CO is a cost-effective and atom-efficient reagent, its toxicity and low solubility present significant challenges in traditional batch processes. In recent years, flow chemistry has revolutionized these transformations, offering enhanced efficiency, safety, and precise control of reaction parameters.

Sulfoximines are valuable scaffold in pharmaceutical, agricultural, and organic chemistry as chiral auxiliars and intermediates. Despite their synthetic potential, previous approaches often rely on toxic reagents, excessive oxidants, and tedious purification steps, leading to low conversions and undesirable by-products.

Here, we report a continuous flow protocol for the N-aroylation of different functionalized aryl halides with sulfoximines under CO pressure using a palladium-based catalyst, a base, and a ligand. Comprehensive screening of organic bases in batch mode allowed to identify optimal conditions, which were then translated into a flow system operating at 80 °C and 6 bar for 40 minutes. This innovative strategy provides rapid reactions, high selectivity, and excellent yields (from 79 to > 99%) across a small library, demonstrating the advantages of continuous flow technology in carbonylation chemistry.

CARBONYLATION REACTIONS AND FLOW CHEMISTRY

Carbonylation reactions involve the incorporation of CO into organic molecules. Initially feared for its toxicity, CO is now essential in various applications, with carbonylation chemistry achieving major advancements in both industry and academic research. [1]

All reactions were performed with 0.5 mmol iodotoluene in 1 mL of DMF for 12 hours at 80 °C.^a Determined by ¹H-NMR of

All reactions were performed with 0.5 mmol iodotoluene in 1 mL of DMF. The reaction mixture was pumped at 100 µL min⁻¹, mixed with a stream of CO at 1.00 mL min⁻¹ and reacted inside a 10 mL coil-reactor for 40 minutes at 80 °C and 6 bar (BPR). ^a Determined by ¹H-NMR of the crude reaction mixture by comparing the methyl of tolyl group (3H, s) of the reaction product (2.40 ppm) with the methyl group of iodotoluene (2.29 ppm) of the reaction mixture or aromatic protons in α -positions of tolyl groups (2H, m) (7.23-7.18) reaction product and 6.94-6.90 ppm iodotoluene).

the crude reaction mixture by comparing the methyl of tolyl group (3H, s) of the reaction product (2.40 ppm) with the methyl group of iodotoluene (2.29 ppm) of the reaction mixture or aromatic protons in α -positions of tolyl groups (2H, m) (7.23-7.18 reaction product and 6.94-6.90 ppm iodotoluene).

stablished by the European Commis

Osterreichischer Wissenschaftsfonds

References:

[1] J-B. Peng et al. Cell J., 2019, 5, 526–552. [2] I. R. Baxendale et al. OPRD, **2016**, 20, 327–360. [3] S. V. Ley et al. React. Chem. Eng., 2016, 1, 280–287.

[4] G. Sekar et al. RSC Adv., **2016**, 6, 37226-37235. [5] P. S. Kumar, Yuan, Y-Q. et al. Tetrahedron Lett., **2017**, 58, 2681–2684. [6] G. Sekar et al. RSC Adv., **2016**, 6, 97152-97159.